209 research outputs found

    Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme

    Get PDF
    Viroids and viroid-like satellite RNAs from plants, and the human hepatitis delta virus (HDV) RNA share some properties that include small size, circularity and replication through a rolling-circle mechanism. Replication occurs in different cell compartments (nucleus, chloroplast and membrane-associated cytoplasmatic vesicles) and has three steps: RNA polymerization, cleavage and ligation. The first step generates oligomeric RNAs that result from the reiterative transcription of the circular templates of one or both polarities, and is catalyzed by either the RNA-dependent RNA polymerase of the helper virus on which viroid-like satellite RNAs are functionally dependent, or by host DNA-dependent RNA polymerases that, remarkably, viroids and HDV redirect to transcribe RNA templates. Cleavage is mediated by host enzymes in certain viroids and viroid-like satellite RNAs, while in others and in HDV is mediated by cis-acting ribozymes of three classes. Ligation appears to be catalyzed mainly by host enzymes. Replication most likely also involves many other non-catalytic proteins of host origin and, in HDV, the single virus-encoded protein.This work was supported by the Ministerio de Ciencia e Innovación of Spain (grant BFU2008-03154/BMC) and by the Generalidad Valenciana (ACOMP/2010/278) to R.F, by the National Science Foundation of the USA (grant IRFP-0602042) to D.G, and by the Agencia Española de Cooperación Internacional (A/022313/08) to A.E. Due to space limitations we have been unable to refer to the original work of many authors and, instead, we have recurred to reviews. We apologize for any inconvenience this may have caused.Peer reviewe

    RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells.

    Get PDF
    The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors

    Spectral asymmetry for bag boundary conditions

    Full text link
    We give an expression, in terms of boundary spectral functions, for the spectral asymmetry of the Euclidean Dirac operator in two dimensions, when its domain is determined by local boundary conditions, and the manifold is of product type. As an application, we explicitly evaluate the asymmetry in the case of a finite-length cylinder, and check that the outcome is consistent with our general result. Finally, we study the asymmetry in a disk, which is a non-product case, and propose an interpretation.Comment: Some minor changes. To appear in Journal of Physics A: Mathematical and Genera

    Associative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus

    Get PDF
    Breeding new varieties with low seed glucosinolate (GS) concentrations has long been a prime target in Brassica napus. In this study, a novel association mapping methodology termed 'associative transcriptomics' (AT) was applied to a panel of 101 B. napus lines to define genetic regions and also candidate genes controlling total seed GS contents. Over 100,000 informative single-nucleotide polymorphisms (SNPs) and gene expression markers (GEMs) were developed for AT analysis, which led to the identification of 10 SNP and 7 GEM association peaks. Within these peaks, 26 genes were inferred to be involved in GS biosynthesis. A weighted gene co-expression network analysis provided additional 40 candidate genes. The transcript abundance in leaves of two candidate genes, BnaA.GTR2a located on chromosome A2 and BnaC.HAG3b on C9, was correlated with seed GS content, explaining 18.8 and 16.8% of phenotypic variation, respectively. Resequencing of genomic regions revealed six new SNPs in BnaA.GTR2a and four insertions or deletions in BnaC.HAG3b. These deletion polymorphisms were then successfully converted into polymerase chain reaction-based diagnostic markers that can, due to high linkage disequilibrium observed in these regions of the genome, be used for marker-assisted breeding for low seed GS lines

    Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering

    Get PDF
    Family 1 glycosyltransferases catalyse the glycosylation of small molecules and play an important role in maintaining cell homeostasis and regulating plant growth and development. In this study, a putative glycosyltransferase gene of family 1, PtGT1, was cloned from poplar (Populus tomentosa Carr.). Sequence analysis showed that this gene encodes a protein of 481 amino acid residues with a conserved PSPG box at its C-terminal, suggesting that it is active in the glycosylation of plant secondary products. The PtGT1 gene was expressed in poplar stems and leaves, with a particularly high expression level in elongating stems. Transgenic tobacco plants ectopically over-expressing PtGT1 were obtained and phenotypes were analysed. Wiesner and Mäule staining showed that stem xylem of transgenic tobacco plants stained more strongly than controls. Measurement of the Klason lignins showed much higher lignin content in the transgenic lines than in control plants. Furthermore, the ectopic over-expression of PtGT1 in tobacco resulted in an early flowering phenotype. These findings offer a possible starting point towards better understanding of the function of poplar PtGT1, and provide a novel strategy for lignin engineering and flowering control in plants through the genetic manipulation of a poplar glycosyltransferase gene

    Supervisors' Perceptions of the Performance of Cooperative Education Employees Working in Federal Agencies

    Get PDF
    Through cooperative education programs, many public agencies employ college students part time or intermittently and groom them for future full-time employment The combination of winnowing and nurturing that occurs in these programs is believed to produce higher performing employees This study tests this hypothesis by comparing Federal supervisors' perceptions of the performance of co-op employees with those recruited from other sources Data come from the 1992 Merit Principles Survey, US Merit Systems Protection Board The results indicate that co-op employees perform at high levels, but they do not outperform other employees as a whole Next, we compare the performance ratings of Federal workers from seven other recruitment sources to see if any source is superior Some interesting findings emerge Of course, performance ratings are an incomplete indicator of an employee's value to the organization These ratings merely reflect supervisors' perceptions, and while high performance is important, agencies may wish to promote other goals in their recruitment and retention efforts such as workforce diversityYeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Tweet valence, volume of abuse, and observers’ dark tetrad personality factors influence victim-blaming and the perceived severity of Twitter cyberabuse

    Get PDF
    Previous research into Twitter cyberabuse has yielded several findings: victim-blaming (VB) was influenced by victims’ initial tweet-valence; perceived severity (PS) was influenced independently by tweet valence and abuse volume; VB and PS were predicted by observer narcissism and psychopathy. However, this previous research was limited by its narrow focus on celebrity victims, and lack of consideration of observer sadism. The current study investigated 125 observers’ VB and PS perceptions of lay-user cyberabuse, and influence of observers’ Dark Tetrad scores (psychopathy, narcissism, Machiavellianism, sadism). We manipulated initial-tweet valence (negative, neutral, positive) and received abuse volume (low, high). Our results indicated that VB was highest following negative initial tweets; VB was higher following high-volume abuse. PS did not differ across initial-tweet valences; PS was greater following a high abuse volume. Regression analyses revealed that observer sadism predicted VB across initial-tweet valences; psychopathy predicted PS when initial tweets were ‘emotive’ (negative, positive), whereas Machiavellianism predicted PS when they were neutral. Our results show that perceptions of lay-user abuse are influenced interactively by victim-generated content and received abuse volume. Our current results contrast with perceptions of celebrity-abuse, which is mostly determined by victim-generated content. Findings are contextualised within the Warranting Theory of impression formation

    Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle

    Get PDF
    Biofilms are dynamic microbial communities in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. In the last decade, early events associated with C. albicans biofilm formation have received considerable attention. However, very little is known about C. albicans biofilm dispersion or the mechanisms and signals that trigger it. This is important because it is precisely C. albicans cells dispersed from biofilms that are the main culprits associated with candidemia and establishment of disseminated invasive disease, two of the gravest forms of candidiasis. Using a simple flow biofilm model recently developed by our group, we have performed initial investigations into the phenomenon of C. albicans biofilm dispersion, as well as the phenotypic characteristics associated with dispersed cells. Our results indicate that C. albicans biofilm dispersion is dependent on growing conditions, including carbon source and pH of the media used for biofilm development. C. albicans dispersed cells are mostly in the yeast form and display distinct phenotypic properties compared to their planktonic counterparts, including enhanced adherence, filamentation, biofilm formation and, perhaps most importantly, increased pathogenicity in a murine model of hematogenously disseminated candidiasis, thus indicating that dispersed cells are armed with a complete arsenal of “virulence factors” important for seeding and establishing new foci of infection. In addition, utilizing genetically engineered strains of C. albicans (tetO-UME6 and tetO-PES1) we demonstrate that C. albicans biofilm dispersion can be regulated by manipulating levels of expression of these key genes, further supporting the evidence for a strong link between biofilms and morphogenetic conversions at different stages of the C. albicans biofilm developmental cycle. Overall, our results offer novel and important insight into the phenomenon of C. albicans biofilm dispersion, a key part of the biofilm developmental cycle, and provide the basis for its more detailed analysis
    corecore